IMPORTANT NOTICES AND DISCLAIMERS CONCERNING NFPA® STANDARDS

NOTICE AND DISCLAIMER OF LIABILITY CONCERNING THE USE OF NFPA STANDARDS

NFPA® codes, standards, recommended practices, and guides (“NFPA Standards”), of which the document contained herein is one, are developed through a consensus standards development process approved by the American National Standards Institute. This process brings together volunteers representing varied viewpoints and interests to achieve consensus on fire and other safety issues. While the NFPA administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in NFPA Standards.

The NFPA disclaims liability for any personal injury, property, or other damages of any nature whatsoever, whether special, indirect, consequential or compensatory, directly or indirectly resulting from the publication, use of, or reliance on NFPA Standards. The NFPA also makes no guaranty or warranty as to the accuracy or completeness of any information published herein.

In issuing and making NFPA Standards available, the NFPA is not undertaking to render professional or other services for or on behalf of any person or entity. Nor is the NFPA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

The NFPA has no power, nor does it undertake, to police or enforce compliance with the contents of NFPA Standards. Nor does the NFPA list, certify, test, or inspect products, designs, or installations for compliance with this document. Any certification or other statement of compliance with the requirements of this document shall not be attributable to the NFPA and is solely the responsibility of the certifier or maker of the statement.

REVISION SYMBOLS IDENTIFYING CHANGES FROM THE PREVIOUS EDITION

Text revisions are shaded. A Δ before a section number indicates that words within that section were deleted and a Δ to the left of a table or figure number indicates a revision to an existing table or figure. When a chapter was heavily revised, the entire chapter is marked throughout with the Δ symbol. Where one or more sections were deleted, a • is placed between the remaining sections. Chapters, annexes, sections, figures, and tables that are new are indicated with an N.

Note that these indicators are a guide. Rearrangement of sections may not be captured in the markup, but users can view complete revision details in the First and Second Draft Reports located in the archived revision information section of each code at www.nfpa.org/docinfo. Any subsequent changes from the NFPA Technical Meeting, Tentative Interim Amendments, and Errata are also located there.

REMARK: UPDATING OF NFPA STANDARDS

Users of NFPA codes, standards, recommended practices, and guides (“NFPA Standards”) should be aware that NFPA Standards may be amended from time to time through the issuance of a Tentative Interim Amendment (TIA) or corrected by Errata. An official NFPA Standard at any point in time consists of the current edition of the document together with any TIAs and Errata then in effect.

To determine whether an NFPA Standard has been amended through the issuance of Tentative Interim Amendments or corrected by Errata, go to www.nfpa.org/docinfo to choose from the list of NFPA Standards or use the search feature to select the NFPA Standard number (e.g., NFPA 13). The document information page provides up-to-date document-specific information as well as postings of all existing TIAs and Errata. It also includes the option to register for an “Alert” feature to receive an automatic email notification when new updates and other information are posted regarding the document.
IMPORTANT NOTICES AND DISCLAIMERS CONCERNING NFPA® STANDARDS

ADDITIONAL NOTICES AND DISCLAIMERS

Updating of NFPA Standards

Users of NFPA codes, standards, recommended practices, and guides (“NFPA Standards”) should be aware that these documents may be superseded at any time by the issuance of new editions or may be amended from time to time through the issuance of Tentative Interim Amendments or corrected by Errata. An official NFPA Standard at any point in time consists of the current edition of the document together with any Tentative Interim Amendments and any Errata then in effect. In order to determine whether a given document is the current edition and whether it has been amended through the issuance of Tentative Interim Amendments or corrected through the issuance of Errata, consult appropriate NFPA publications such as the National Fire Codes® Subscription Service, visit the NFPA website at www.nfpa.org, or contact the NFPA at the address listed below.

Interpretations of NFPA Standards

A statement, written or oral, that is not processed in accordance with Section 6 of the Regulations Governing the Development of NFPA Standards shall not be considered the official position of NFPA or any of its Committees and shall not be considered to be, nor be relied upon as, a Formal Interpretation.

Patents

The NFPA does not take any position with respect to the validity of any patent rights referenced in, related to, or asserted in connection with an NFPA Standard. The users of NFPA Standards bear the sole responsibility for determining the validity of any such patent rights, as well as the risk of infringement of such rights, and the NFPA disclaims liability for the infringement of any patent resulting from the use of or reliance on NFPA Standards.

NFPA adheres to the policy of the American National Standards Institute (ANSI) regarding the inclusion of patents in American National Standards (“the ANSI Patent Policy”), and hereby gives the following notice pursuant to that policy:

NOTICE: The user’s attention is called to the possibility that compliance with an NFPA Standard may require use of an invention covered by patent rights. NFPA takes no position as to the validity of any such patent rights or as to whether such patent rights constitute or include essential patent claims under the ANSI Patent Policy. If, in connection with the ANSI Patent Policy, a patent holder has filed a statement of willingness to grant licenses under these rights on reasonable and nondiscriminatory terms and conditions to applicants desiring to obtain such a license, copies of such filed statements can be obtained, on request, from NFPA. For further information, contact the NFPA at the address listed below.

Law and Regulations

Users of NFPA Standards should consult applicable federal, state, and local laws and regulations. NFPA does not, by the publication of its codes, standards, recommended practices, and guides, intend to urge action that is not in compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

NFPA Standards are copyrighted. They are made available for a wide variety of both public and private uses. These include both use, by reference, in laws and regulations, and use in private self-regulation, standardization, and the promotion of safe practices and methods. By making these documents available for use and adoption by public authorities and private users, the NFPA does not waive any rights in copyright to these documents.

Use of NFPA Standards for regulatory purposes should be accomplished through adoption by reference. The term “adoption by reference” means the citing of title, edition, and publishing information only. Any deletions, additions, and changes desired by the adopting authority should be noted separately in the adopting instrument. In order to assist NFPA in following the uses made of its documents, adopting authorities are requested to notify the NFPA (Attention: Secretary, Standards Council) in writing of such use. For technical assistance and questions concerning adoption of NFPA Standards, contact NFPA at the address below.

For Further Information

All questions or other communications relating to NFPA Standards and all requests for information on NFPA procedures governing its codes and standards development process, including information on the procedures for requesting Formal Interpretations, for proposing Tentative Interim Amendments, and for proposing revisions to NFPA standards during regular revision cycles, should be sent to NFPA headquarters, addressed to the attention of the Secretary, Standards Council, NFPA, 1 Batterymarch Park, P.O. Box 9101, Quincy, MA 02269-9101; email: stds_admin@nfpa.org.

For more information about NFPA, visit the NFPA website at www.nfpa.org. All NFPA codes and standards can be viewed at no cost at www.nfpa.org/docinfo.
NFPA® 51B

Standard for

Fire Prevention During Welding, Cutting, and Other Hot Work

2019 Edition

This edition of NFPA 51B, Standard for Fire Prevention During Welding, Cutting, and Other Hot Work, was prepared by the Technical Committee on Hot Work Operations. It was issued by the Standards Council on June 25, 2018, with an effective date of July 15, 2018, and supersedes all previous editions.

This edition of NFPA 51B was approved as an American National Standard on July 15, 2018.

Origin and Development of NFPA 51B

NFPA 51B was tentatively adopted at the 1960 NFPA Annual Meeting, and the first edition was adopted in 1962. Subsequent editions were published in 1971, 1976, 1977, 1984, 1989, and 1994. The 1999 edition was expanded to include other hot work operations, as defined in the document, to clarify the roles of fire watch and to introduce a defined permit authorizing individual.

The 2003 edition was modified to incorporate the following additions: a clear reference to ANSI Z49.1, Safety in Welding, Cutting, and Allied Processes, to ensure other non-fire-related hot work requirements were followed; a requirement for signs designating hot work areas as needed; further clarification in the annex of the role of fire watch and more advisory material describing management responsibilities; requirements for consideration on nonhorizontal spark or slag travel hazard; requirements and advisory material for the consideration of personal protective equipment; decision trees for when a permit is needed and when a fire watch is needed; and a new chapter, Sole Proprietors and Individual Operators, to consider one-person shops. The 2003 edition was also modified to comply with the updated Manual of Style for NFPA Technical Committee Documents.

The 2009 edition included a new requirement for listed and/or approved welding blankets, pads, and curtains and gave definitions of those terms; updated permit information; clarified the 35 Foot Rule; and gave alternative methods to hot work, requirements for site-specific hazard awareness by hot work contractors, and new requirements for personal protective equipment.

The 2014 edition included new definitions on designated and permitted areas. In addition to the definitions, new requirements were added to designated areas. The scope was modified to clarify that the document is also concerned with preventing injuries and not just loss of life during hot work operations. The purpose was revised to clarify that this document provides requirements and not just guidance and that it applied to all those who are involved with hot work operations. Two requirements were added: (1) for welding blankets, pads, and curtains to be both listed and approved, and (2) the maximum period for which a permit is valid is limited to a 24-hour period.

The 2019 edition includes new definitions on fire protection system, fire monitoring, and fire watch, and language was added to Chapter 5 to differentiate between fire watch and fire monitoring requirements. A requirement was added for fire extinguishers, which are referenced throughout the document, to comply with NFPA 10, Standard for Portable Fire Extinguishers. New annex material addresses proper preparation of areas deemed impermissible due to impaired fire protection systems, clarifies the process for reinspections of hot work areas during each shift, and provides comparisons between hot work byproduct temperatures and combustible material ignition temperatures. The permit issuance process has been reorganized to clarify the requirements, and a revision has been made to require the fire watch to be maintained for at least 1 hour (where it had been a half-hour).
Technical Committee on Hot Work Operations

Mark E. Blank, Chair
FM Global, IL [I]

Lester Andree, National Automatic Sprinkler Fitters LU 669, AZ [L]
 Rep. United Assn. of Journeymen & Apprentices of the
 Plumbing & Pipe Fitting Industry
Christopher J. Bloom, CB Fire Consultants, OR [SE]
Jeff M. Breidenbach, Liberty Mutual, KY [I]
Gregory R. Cameron, Arizona Public Service Company, AZ [U]
Christopher Drobny, Chubb, CA [I]
Aaron D. Duff, Johnson & Johnson, NJ [U]
 Rep. NFPA Industrial Fire Protection Section
Patrick T. Earley, New Brunswick Fire Department, NJ [E]
Katelyn Fowler, Nuclear Electric Insurance Limited, DE [I]
Thomas K. Furlong, Nuclear Service Organization, DE [I]
Satya Prakash Garg, GAIL, India Limited, India [E]
Gregory G. Grondin, Bath Iron Works Corporation, ME [M]
James R. Haiser, Jr., Dow Corning Corporation, MI [U]
David W. Hollinger, Drexel University, PA [U]

Dennis R. Howard, Safety Management, Inc., LA [SE]
Traci D. Huffman, Allianz Risk Consulting, LLC, IA [I]
David Kearney, Philadelphia Fire Department, PA [E]
Michael Lawn, Global Asset Protection Services, LLC, NY [I]
 Rep. Global Asset Protection Services, LLC
Sergio Linan, Zurich Insurance Company, TX [I]
Richard T. Long, Jr., Exponent, Inc., MD [SE]
Wayne Maksylewich, Consultant, Canada [SE]
August F. Manz, A. F. Manz Associates, NJ [M]
 Rep. American Welding Society
Michael Matros, Sudbury Fire Department, MA [U]
Lester W. Swanson, ArcelorMittal, IN [U]
Alain Theriault, Pyrotech BEI Inc., Canada [SE]
Anthony D. Tijerina, Tijerina Investigations, Inc., GA [SE]
David A. Werba, Miller Electric Manufacturing Company, SC [M]
 Rep. National Electrical Manufacturers Association

Alternates

Robert C. Berry, Liberty Mutual Insurance Company, NC [I]
 (Alt. to Jeff M. Breidenbach)
Joseph M. Bloom, Bloom Fire Investigation, OR [SE]
 (Alt. to Christopher J. Bloom)
Andrew J. Brady, Nuclear Service Organization, DE [I]
 (Alt. to Thomas K. Furlong)
DeAndrea D. Cooley, Chubb, IL [I]
 (Alt. to Christopher Drobny)
Aditya Dongre, Global Asset Protection Services, LLC, Canada [I]
 (Alt. to Michael Lawn)

Ruby Evans, FM Global, MA [I]
 (Alt. to Mark E. Blank)
Stephen P. Hedrick, American Welding Society, FL [M]
 (Alt. to August F. Manz)
James H. Keidel, Allianz Risk Consulting, NC [I]
 (Alt. to Traci D. Huffman)
Robert D. Ziebarth, Zurich Services Corporation, OH [I]
 (Alt. to Sergio Linan)

Laura E. Moreno, NFPA Staff Liaison

This list represents the membership at the time the Committee was balloted on the final text of this edition.
Since that time, changes in the membership may have occurred. A key to classifications is found at the back of the document.

NOTE: Membership on a committee shall not in and of itself constitute an endorsement of the Association or any document developed by the committee on which the member serves.

Committee Scope: This Committee shall have primary responsibility for documents on the prevention of injury, loss of life and loss of property from fire or explosion as a result of hot work. Hot work operations include, but are not limited to, cutting, welding, burning, or similar operations capable of initiating fire or explosion.
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Administration</th>
<th>51B–4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Scope.</td>
<td>51B–4</td>
</tr>
<tr>
<td>1.2</td>
<td>Purpose.</td>
<td>51B–4</td>
</tr>
<tr>
<td>1.3</td>
<td>Application.</td>
<td>51B–4</td>
</tr>
<tr>
<td>1.4</td>
<td>Retroactivity.</td>
<td>51B–4</td>
</tr>
<tr>
<td>1.5</td>
<td>Equivalency.</td>
<td>51B–4</td>
</tr>
<tr>
<td>1.6</td>
<td>Units and Formulas.</td>
<td>51B–4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Referenced Publications</th>
<th>51B–5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>General.</td>
<td>51B–5</td>
</tr>
<tr>
<td>2.2</td>
<td>NFPA Publications.</td>
<td>51B–5</td>
</tr>
<tr>
<td>2.3</td>
<td>Other Publications.</td>
<td>51B–5</td>
</tr>
<tr>
<td>2.4</td>
<td>References for Extracts in Mandatory Sections.</td>
<td>51B–5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Definitions</th>
<th>51B–5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>General.</td>
<td>51B–5</td>
</tr>
<tr>
<td>3.2</td>
<td>NFPA Official Definitions.</td>
<td>51B–5</td>
</tr>
<tr>
<td>3.3</td>
<td>General Definitions.</td>
<td>51B–5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Responsibility for Hot Work</th>
<th>51B–6</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Management.</td>
<td>51B–6</td>
</tr>
<tr>
<td>4.2</td>
<td>Permit Authorizing Individual (PAI).</td>
<td>51B–6</td>
</tr>
<tr>
<td>4.3</td>
<td>Hot Work Operator.</td>
<td>51B–6</td>
</tr>
<tr>
<td>4.4</td>
<td>Fire Watch.</td>
<td>51B–6</td>
</tr>
<tr>
<td>4.5</td>
<td>Contractors.</td>
<td>51B–7</td>
</tr>
<tr>
<td>4.6</td>
<td>Mutual Responsibility.</td>
<td>51B–7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Fire Prevention Precautions</th>
<th>51B–7</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Personal Protective Clothing.</td>
<td>51B–7</td>
</tr>
<tr>
<td>5.2</td>
<td>Fire Extinguishers.</td>
<td>51B–7</td>
</tr>
<tr>
<td>5.3</td>
<td>Permissible Areas.</td>
<td>51B–7</td>
</tr>
<tr>
<td>5.4</td>
<td>Nonpermissible Areas.</td>
<td>51B–7</td>
</tr>
<tr>
<td>5.5</td>
<td>Hot Work Permit.</td>
<td>51B–7</td>
</tr>
<tr>
<td>5.6</td>
<td>Fire Watch and Fire Monitoring</td>
<td>51B–8</td>
</tr>
<tr>
<td>5.7</td>
<td>Hot Tapping.</td>
<td>51B–8</td>
</tr>
<tr>
<td>5.8</td>
<td>Cylinders.</td>
<td>51B–8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Sole Proprietors and Individual Operators</th>
<th>51B–8</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Assignment of PAI and Fire Watch.</td>
<td>51B–8</td>
</tr>
<tr>
<td>6.2</td>
<td>Written Hot Work Permit.</td>
<td>51B–8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Public Exhibitions and Demonstrations</th>
<th>51B–8</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Application.</td>
<td>51B–8</td>
</tr>
<tr>
<td>7.2</td>
<td>Supervision.</td>
<td>51B–8</td>
</tr>
<tr>
<td>7.3</td>
<td>Site.</td>
<td>51B–8</td>
</tr>
<tr>
<td>7.4</td>
<td>Fire Protection.</td>
<td>51B–8</td>
</tr>
<tr>
<td>7.5</td>
<td>Cylinders.</td>
<td>51B–9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Annex</th>
<th>Explanatory Material</th>
<th>51B–9</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Annex</th>
<th>Significant Hot Work Incidents</th>
<th>51B–16</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Annex</th>
<th>Informational References</th>
<th>51B–18</th>
</tr>
</thead>
</table>

| Index | | 51B–20 |
NFPA 51B

Standard for

Fire Prevention During Welding, Cutting, and Other Hot Work

2019 Edition

IMPORTANT NOTE: This NFPA document is made available for use subject to important notices and legal disclaimers. These notices and disclaimers appear in all publications containing this document and may be found under the heading “Important Notices and Disclaimers Concerning NFPA Standards.” They can also be viewed at www.nfpa.org/disclaimers or obtained on request from NFPA.

UPDATES, ALERTS, AND FUTURE EDITIONS: New editions of NFPA codes, standards, recommended practices, and guides (i.e., NFPA Standards) are released on scheduled revision cycles. This edition may be superseded by a later one, or it may be amended outside of its scheduled revision cycle through the issuance of Tentative Interim Amendments (TIAs). An official NFPA Standard at any point in time consists of the current edition of the document, together with all TIAs and Errata in effect. To verify that this document is the current edition or to determine if it has been amended by TIAs or Errata, please consult the National Fire Codes® Subscription Service or the “List of NFPA Codes & Standards” at www.nfpa.org/docinfo. In addition to TIAs and Errata, the document information pages also include the option to sign up for alerts for individual documents and to be involved in the development of the next edition.

NOTICE: An asterisk (*) following the number or letter designating a paragraph indicates that explanatory material on the paragraph can be found in Annex A.

A reference in brackets [] following a section or paragraph indicates material that has been extracted from another NFPA document. As an aid to the user, the complete title and edition of the source documents for extracts in mandatory sections of the document are given in Annex C. Extracted text may be edited for consistency and style and may include the revision of internal paragraph references and other references as appropriate. Requests for interpretations or revisions of extracted text shall be sent to the technical committee responsible for the source document.

Information on referenced publications can be found in Chapter 2 and Annex C.

Chapter 1 Administration

1.1 Scope.

1.1.1* This standard shall cover provisions to prevent injury, loss of life, and loss of property from fire or explosion as a result of hot work.

1.1.2 Installation and operation of arc cutting and welding equipment and operation of gas cutting and welding equipment shall be in accordance with ANSI Z49.1, *Safety in Welding, Cutting, and Allied Processes*.

1.2* Purpose. This standard shall provide minimum requirements for all persons who manage, request, authorize, perform, or supervise hot work.

1.3 Application.

△ 1.3.1 This standard shall apply to the following hot work processes:

1. Welding and allied processes
2. Heat treating
3. Grinding
4. Thawing pipe
5. Powder-driven fasteners
6. Hot riveting
7. Torch-applied roofing in conjunction with the requirements of NFPA 241
8. Similar applications producing or using a spark, flame, or heat

△ 1.3.2 This standard shall not apply to the following:

1. Candles
2. Pyrotechnics or special effects
3. Cooking operations
4. Electric soldering irons
5. Design and installation of gas cutting equipment and welding equipment covered in NFPA 51
6. Additional requirements for hot work operations in confined spaces
7. Lockout/tagout procedures during hot work

1.4 Retroactivity. The provisions of this standard reflect a consensus of what is necessary to provide an acceptable degree of protection from the hazards addressed in this standard at the time the standard was issued.

1.4.1 In those cases where the authority having jurisdiction determines that the existing situation presents an unacceptable degree of risk, the authority having jurisdiction shall be permitted to apply retroactively any portions of this standard deemed appropriate.

1.4.2 The retroactive requirements of this standard shall be permitted to be modified if their application clearly would be impractical in the judgment of the authority having jurisdiction, and only where it is clearly evident that a reasonable degree of safety is provided.

1.5 Equivalency. Nothing in this standard is intended to prevent the use of systems, methods, or devices of equivalent or superior quality, strength, fire resistance, effectiveness, durability, and safety over those prescribed by this standard.

1.5.1 Technical documentation shall be submitted to the authority having jurisdiction to demonstrate equivalency.

1.5.2 The system, method, or device shall be approved for the intended purpose by the authority having jurisdiction.

1.6 Units and Formulas.

N 1.6.1 The units of measure in this standard are presented first in U.S. customary units (inch-pound units). International System (SI) of Units follow the inch-pound units in parentheses.

N 1.6.2 Either system of units shall be acceptable for satisfying the requirements in the standard.

N 1.6.3 Users of this standard shall apply one system of units consistently and shall not alternate between units.
1.6.4 The values presented for measurements in this standard are expressed with a degree of precision appropriate for practical application and enforcement. It is not intended that the application or enforcement of these values be more precise than the precision expressed.

1.6.5 Where extracted text contains values expressed in only one system of units, the values in the extracted text have been retained without conversion to preserve the values established by the responsible technical committee in the source document.

Chapter 2 Referenced Publications

2.1 General. The documents or portions thereof listed in this chapter are referenced within this standard and shall be considered part of the requirements of this document.

2.2 NFPA Publications. National Fire Protection Association, 1 Batterymarch Park, Quincy, MA 02169-7471.

2.3 Other Publications.

2.3.1 ANSI Publications. American National Standards Institute, Inc., 25 West 43rd Street, 4th Floor, New York, NY 10036.

2.3.2 Other Publications.

2.4 References for Extracts in Mandatory Sections.

Chapter 3 Definitions

3.1 General. The definitions contained in this chapter shall apply to the terms used in this standard. Where terms are not defined in this chapter or within another chapter, they shall be defined using their ordinarily accepted meanings within the context in which they are used. Merriam-Webster’s Collegiate Dictionary, 11th edition, shall be the source for the ordinarily accepted meaning.

3.2 NFPA Official Definitions.

3.2.1 Approved. Acceptable to the authority having jurisdiction.

3.2.2 Authority Having Jurisdiction (AHJ). An organization, office, or individual responsible for enforcing the requirements of a code or standard, or for approving equipment, materials, an installation, or a procedure.

3.2.3 Listed. Equipment, materials, or services included in a list published by an organization that is acceptable to the authority having jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production of listed equipment or materials or periodic evaluation of services, and whose listing states that either the equipment, material, or service meets appropriate designated standards or has been tested and found suitable for a specified purpose.

3.2.4 Shall. Indicates a mandatory requirement.

3.2.5 Should. Indicates a recommendation or that which is advised but not required.

3.2.6 Standard. An NFPA Standard, the main text of which contains only mandatory provisions using the word “shall” to indicate requirements and that is in a form generally suitable for mandatory reference by another standard or code or for adoption into law. Nonmandatory provisions are not to be considered a part of the requirements of a standard and shall be located in an appendix, annex, footnote, informational note, or other means as permitted in the NFPA Manuals of Style. When used in a generic sense, such as in the phrase “standards development process” or “standards development activities,” the term “standards” includes all NFPA Standards, including Codes, Standards, Recommended Practices, and Guides.

3.3 General Definitions.

3.3.1 Fire Monitoring. Provisions implemented to provide early warning of smoldering fire conditions in the hot work area following completion of the established fire watch time period.

3.3.2 Fire Protection System. Any fire alarm device or system or fire-extinguishing device or system, or combination thereof, that is designed and installed for detecting, controlling, or extinguishing a fire or otherwise alerting occupants, or the fire department, or both, that a fire has occurred. [1, 2018]

3.3.3 Fire Watch. A person or persons responsible for continuously observing the hot work area, maintaining fire-safe conditions, and responding to emergencies during hot work operations and in the established period following.

3.3.4 Hot Work. Work involving burning, welding, or a similar operation that is capable of initiating fires or explosions.

3.3.5 Management. For the purpose of hot work, all persons, including owners, contractors, educators, or designated agents, who are responsible for hot work operations.

3.3.6 Permissible Areas.

3.3.6.1 Designated Area. A specific location designed and approved for hot work operations that is maintained fire-safe, such as a maintenance shop or a detached outside location, that is of noncombustible or fire-resistant construction, essentially free of combustible and flammable contents, and suitably segregated from adjacent areas.

3.3.6.2 Permit-Required Area. Any location other than a designated area that is approved for hot work and is made fire-safe by removing or protecting combustibles from ignition sources.

3.3.7 Permit. A document issued by the AHJ for the purpose of authorizing performance of a specified activity. [1, 2018]

3.3.8 Permit Authorizing Individual (PAI). The individual designated by management to authorize hot work.

Shaded text = Revisions. ☐ = Text deletions and figure/table revisions. ● = Section deletions. N = New material.

2019 Edition
4.2 Permit Authorizing Individual (PAI). In conjunction with management, the PAI shall be responsible for the safe operations of hot work activities.

4.2.1* The PAI shall consider the safety of the hot work operator and fire watch with respect to personal protective equipment (PPE) for other special hazards beyond hot work. (See Section 3.1.)

4.2.2 The PAI shall determine site-specific flammable materials, hazardous processes, or other potential fire hazards that are present or likely to be present in the work location.

4.2.3 The PAI shall ensure the protection of combustibles from ignition by the following means:

1. Considering alternative methods to hot work
2. Moving the work to a location that is free from combustibles
3. If the work cannot be moved, moving the combustibles to a safe distance or having the combustibles properly shielded against ignition
4. Scheduling hot work so that operations that could expose combustibles to ignition are not begun during hot work operations

Δ 4.2.4 If the criteria of 4.2.3(2) through 4.2.3(4) cannot be met, hot work shall not be performed.

Δ 4.2.5 The PAI shall determine that appropriate fire protection and extinguishing equipment are located at the hot work site.

4.2.6 Where a fire watch is required (see Section 5.6), the PAI shall be responsible for ensuring that a fire watch is at the site.

4.2.7* Where a fire watch is not required, the PAI shall make a final check ½ hour after the completion of hot work operations to detect and extinguish smoldering fires.

4.3 Hot Work Operator. The hot work operator shall handle equipment safely and use it as follows so as not to endanger lives and property:

1. The operator shall have the PAI’s approval before starting hot work operations.
2. All equipment shall be examined to ensure it is in a safe operating condition; if found to be incapable of reliable safe operation, the equipment shall be repaired by qualified personnel prior to its next use or be withdrawn from service.
3. The operator shall cease hot work operations if unsafe conditions develop and shall notify management, the area supervisor, or the PAI for reassessment of the situation.

4.4 Fire Watch.

Δ 4.4.1* The fire watch shall be trained to recognize the inherent hazards of the work site and hot work operations.

Δ 4.4.2 The fire watch shall ensure safe conditions are maintained during hot work operations.

Δ 4.4.3 The fire watch shall have the authority to stop hot work operations if unsafe conditions develop.

Δ 4.4.4* The fire watch shall have fire-extinguishing equipment readily available and shall be trained in its use.

4.4.5 The fire watch shall be familiar with the facilities and procedures for sounding an alarm in the event of a fire.
4.4.6 The fire watch shall watch for fires in all exposed areas and try to extinguish them only when the fires are obviously within the capacity of the equipment available. If the fire watch determines that the fire is not within the capacity of the equipment, the fire watch shall sound the alarm immediately.

4.4.7* The fire watch shall be permitted to perform additional tasks, but those tasks shall not distract him or her from his or her fire watch responsibilities, except as outlined in Chapter 6.

4.5* Contractors. Before starting any hot work, contractors and their clients shall discuss the planned project completely, including the type of hot work to be conducted and the hazards in the area.

4.6 Mutual Responsibility. Management, contractors, the PAI, the fire watch, and the operators shall recognize their mutual responsibility for safety in hot work operations.

Chapter 5 Fire Prevention Precautions

5.1* Personal Protective Clothing. Clothing shall be selected to minimize the potential for ignition, burning, trapping hot sparks, and electric shock.

5.2 Fire Extinguishers. Fire extinguishers required by this standard shall be in accordance with NFPA 10.

5.3 Permissible Areas.

5.3.1 General. Hot work shall be permitted only in areas that are or have been made fire safe.

5.3.2 Designated or Permit-Required Areas. Hot work shall be performed in either designated areas or permit-required areas.

5.3.2.1 Designated Areas.

5.3.2.1.1 In order for a location to be a designated area, the area shall meet the requirements in 5.5.1.

5.3.2.1.2 Prior to the start of hot work in a designated area, at a minimum, the hot work operator shall verify all of the following:

(1) The location is fire resistant.
(2) The requirements of 5.5.1.3 are met.
(3) Fire extinguishers are in working condition and readily available.
(4) Ventilation is working properly.
(5) Equipment is in working order.

5.3.2.1.3 Permanent areas designated for hot work shall be reviewed at least annually by the PAI.

5.3.2.1.4 Signs shall be posted designating hot work areas as deemed necessary by the PAI.

5.3.2.2* Permit-Required Areas. Before hot work operations begin in a permit-required area, a written hot work permit issued by the PAI shall be required in accordance with Section 5.5.

5.4* Nonpermissible Areas. Hot work shall not be permitted in the following:

(1) In areas not authorized by management
(2) In buildings where fire protection systems are impaired, unless additional precautions are taken as determined by the PAI or AHJ
(3) In the presence of explosive atmospheres

(4) In the presence of uncleaned or improperly prepared equipment, drums, tanks, or other containers that have previously contained materials that could develop explosive atmospheres

(5) In areas with potential fire or flash fire hazards associated with the presence of one or more combustible particulate solids (dusts)

5.5* Hot Work Permit.

5.5.1 Before a hot work permit is issued, the conditions in 5.5.1.1 through 5.5.1.15 shall be verified by the PAI.

5.5.1.1 The hot work equipment to be used shall be in satisfactory operating condition and in good repair.

5.5.1.2 Where combustible materials, such as paper clippings, wood shavings, or textile fibers, are on the floor, the floor shall be swept clean for a radius of 35 ft (11 m).

5.5.1.2.1* Combustible floors shall be kept wet, covered with damp sand, or protected by a listed welding blanket, welding pad, or equivalent.

5.5.1.2.2 Where floors have been wet down, personnel operating arc welding equipment or cutting equipment shall be protected from possible electric shock.

5.5.1.3* Combustibles shall be relocated at least 35 ft (11 m) in all directions from the hot work area.

5.5.1.3.1* If relocation is impractical, combustibles shall be shielded by a barrier constructed of noncombustible materials or otherwise protected by a listed welding curtain, welding blanket, welding pad, or equivalent.

5.5.1.3.2 To prevent the entrance of sparks, the edges of covers at the floor shall be tight, including at the point where covers overlap.

5.5.1.4 Openings or cracks in walls, floors, or ducts within 35 ft (11 m) of the hot work site shall be covered or sealed with listed fire-rated or noncombustible material to prevent the passage of sparks to adjacent areas.

5.5.1.5 Ducts and conveyor systems that might carry sparks to distant combustibles shall be shielded, shut down, or both.

5.5.1.6* If hot work is done near walls, partitions, ceilings, or roofs of combustible construction, they shall be protected by a listed welding curtain, welding blanket, welding pad, or equivalent.

5.5.1.7 If hot work is done on one side of a wall, partition, ceiling, or roof, the criteria in either 5.5.1.7.1 or 5.5.1.7.2 shall apply.

5.5.1.7.1 Precautions shall be taken to prevent ignition of combustibles on the other side by relocating the combustibles.

5.5.1.7.2 If it is impractical to relocate combustibles, a fire watch shall be provided on the side opposite from where the work is being performed.

5.5.1.8 Hot work shall not be attempted on a partition, wall, ceiling, or roof that has a combustible covering or insulation, on walls or partitions of combustible sandwich-type panel construction.
5.5.1.9 Hot work that is performed on pipes or other metal that is in contact with combustible walls, partitions, ceilings, roofs, or other combustibles shall not be undertaken if the work is close enough to cause ignition by conduction.

5.5.1.10 Fully charged and operable fire extinguishers that are appropriate for the type of possible fire shall be available immediately at the work area.

5.5.1.11 If existing hose lines are located within the hot work area defined by the permit, they shall be connected and ready for service but shall not be required to be unrolled or charged.

5.5.1.12* During hot work, special precautions shall be taken to avoid accidental activation of automatic fire protection systems.

5.5.1.13 The operator and nearby personnel shall be suitably protected against dangers such as heat, sparks, and slag.

5.5.1.14* In instances where the scope of work and the tools used to conduct hot work result in possible travel of slag, sparks, spatter, or similar mobile sources of ignition farther than 35 ft (11 m), the PAI shall be permitted to extend the distances and areas addressed in 5.5.1.2 through 5.5.1.4.

5.5.1.15* In instances where the scope of work and tools used to conduct hot work are known to be incapable of generating slag, sparks, spatter, or similar mobile sources of ignition capable of leaving the immediate area of the applied hot work, the PAI shall be permitted to reduce the distances and areas addressed in 5.5.1.2 through 5.5.1.4.

5.5.2 The PAI shall describe any separation distance extension or reduction on the hot work permit.

5.5.3 The PAI shall determine the time period for which the hot work permit is valid.

5.5.4 The hot work permit shall not be valid for a time period exceeding 24 hours.

5.5.5* The PAI shall reinspect the hot work area at least once per shift during the hot work permit time period to ensure a fire-safe area.

5.6 Fire Watch and Fire Monitoring.

5.6.1* A fire watch shall be required by the PAI when hot work is performed in a location where other than a minor fire might develop or where any of the following conditions exist:

(1)* Combustible materials in building construction or contents closer than 35 ft (11 m) to the hot work operation

(2) Combustible materials more than 35 ft (11 m) away from the hot work operation but easily ignited by sparks

(3) Wall or floor openings within a 35 ft (11 m) radius that expose combustible materials in adjacent areas, including concealed spaces in walls or floors

(4) Combustible materials adjacent to the opposite side of partitions, walls, ceilings, or roofs and likely to be ignited

5.6.1.1 A fire watch shall be maintained for 1 hour after completion of hot work operations in order to detect and extinguish smoldering fires.

5.6.1.2 The duration of the fire watch shall be permitted to be extended if the PAI determines the fire hazards warrant the extension.

5.6.2* More than one fire watch shall be required if combustible materials that could be ignited by the hot work operation cannot be directly observed by the initial fire watch.

5.6.3* Following the completion of the established fire watch time period, fire monitoring shall be provided within the hot work area for up to an additional 3 hours as determined by the PAI.

5.7* Hot Tapping. Hot tapping or other cutting and welding on a flammable gas or liquid transmission or distribution utility pipeline shall be performed by a crew qualified to make hot taps.

5.8 Cylinders. Cylinder use and storage shall be in accordance with NFPA 55.

Chapter 6 Sole Proprietors and Individual Operators

6.1* Assignment of PAI and Fire Watch. In a site where hot work operations are not under the control of another authority, the individual hot work operator shall be permitted to serve as PAI and as fire watch, provided that the operator is trained and follows the provisions of this standard.

6.2 Written Hot Work Permit. A checklist shall be permitted to serve as the written hot work permit.

Chapter 7 Public Exhibitions and Demonstrations

7.1 Application. The provisions of this chapter shall apply to oxy-fuel gas welding and cutting operations at public exhibitions, demonstrations, displays, and trade shows, referred to hereinafter as the "site," in order to promote the safe use of compressed gases in public gatherings.

7.2 Supervision. Installation and operation of welding, cutting, and related equipment shall be done by, or under the supervision of, a competent operator, to ensure the personal protection of viewers and demonstrators as well as the protection from fire of materials in and around the site and the building itself.

7.3 Site.

7.3.1 Location. Sites involving the use and storage of compressed gases shall be located so as not to interfere with egress during an emergency.

7.3.2 Design. The site shall be constructed, equipped, and operated in such a manner that the demonstration minimizes the possibility of injury to viewers.

7.4 Fire Protection.

7.4.1 Fire Extinguishers. Each site shall be provided with a portable fire extinguisher of appropriate size and type in accordance with NFPA 10.
7.4.2 Shielding. The public, combustible materials, and compressed gas cylinders at the site shall be protected from flames, sparks, and molten metal.

7.4.3 Fire Department Notification. The fire department shall be notified in advance of the use of a site for public exhibitions, demonstrations, and trade shows.

7.5 Cylinders.

7.5.1 Gas Capacity Limitation.

7.5.1.1 Cylinders containing compressed gases for use at the site shall not be charged in excess of one-half their maximum permissible content.

7.5.1.2 Cylinders of liquefied gases and acetylene shall be charged to not more than one-half their maximum permissible charged gauge pressure [psi (kPa)].

7.5.1.3 Cylinders of liquefied gases shall be charged to not more than one-half the maximum permissible capacity [lb (kg)].

7.5.2 Storage.

7.5.2.1 Cylinders located at the site shall be connected for use.

7.5.2.2 A sufficient number of additional cylinders shall be permitted to be stored at the site to furnish approximately one day’s consumption of each gas used.

7.5.2.3 Other cylinders shall be stored in an approved storage area, but not near a building exit.

7.5.3 Transporting Cylinders. Cylinders in excess of 40 lb (18 kg) total weight being transported to or from the site shall be carried on a hand truck or motorized truck.

7.5.4 Process Hose. Process hose shall be located and protected so that they will not be physically damaged.

7.5.5 Cylinder Valves. Cylinder valves shall be closed when equipment is unattended.

7.5.6 Valve Caps. If cylinders are designed to be equipped with valve protection caps, such caps shall be in place, except when the cylinders are in service or are connected and ready for service.

7.5.7 Cylinder Protection. Cylinders shall be secured so that they cannot be knocked over.

Annex A Explanatory Material

Annex A is not a part of the requirements of this NFPA document but is included for informational purposes only. This annex contains explanatory material, numbered to correspond with the applicable text paragraphs.

A.1.1.1 Cutting and welding processes using electric arcs or oxy–fuel gas flames are a necessary part of our industrial world. Too often, however, the persons who use, contract, or supervise the use of these processes do not fully appreciate that their improper use can result in loss of life and property by fire and explosion.

Approximately 6 percent of fires in industrial properties and many fires in other properties have been caused by cutting and welding, primarily with portable equipment in areas not specifically designed or approved for such work. Cutting and certain arc welding operations produce literally thousands of ignition sources in the form of sparks and hot slag. Electric arcs or oxy–fuel gas flames and hot work pieces are also inherent ignition sources.

The majority of fires in which cutting and welding are factors have been caused by sparks. These globules of molten metal have scattered horizontally as far as 35 ft (11 m), setting fire to all kinds of combustible materials. They have also fallen through cracks, pipe holes, or other small openings in floors and partitions, starting fires that have reached serious proportions before being noticed.

Electric arcs or oxy–fuel gas flames, in themselves, have rarely caused fire except where they have over heated combustibles in the vicinity of the work or where they have been used on containers that have held combustibles without having been cleaned and purged. In the latter case, an explosion generally resulted.

The heat of the metal being welded or cut has caused fires where the hot pieces were permitted to rest or fall upon combustible materials. Fires and explosions have also been caused where such heat has been transmitted, as in the case of a container, through the metal to a flammable atmosphere or to combustibles within the container.

Anything that is combustible or flammable is susceptible to ignition by cutting and welding. The most common materials likely to become involved in fire are those of combustible building construction such as the following:

(1) Floors, partitions, and roofs
(2) Combustible contents such as wood, paper, textiles, plastics, chemicals, and flammable liquids and gases
(3) Combustible ground cover such as grass and brush

Preventing hot work fires can best be achieved by separating combustibles from ignition sources or by shielding combustibles. Table A.1.1.1 provides a reference comparison between common hot work activities and their byproducts and the ignition temperature of common combustible or flammable materials.

A.1.2 Persons who manage, request, authorize, perform, or supervise hot work could include, but not be limited to, contractors, employees, and property managers.

△ A.1.3.1(7) There are more detailed, and in some cases more stringent, requirements for torch-applied roofing found in NFPA 241.

A.3.2.1 Approved. The National Fire Protection Association does not approve, inspect, or certify any installations, procedures, equipment, or materials; nor does it approve or evaluate testing laboratories. In determining the acceptability of installations, procedures, equipment, or materials, the authority having jurisdiction may base acceptance on compliance with NFPA or other appropriate standards. In the absence of such standards, said authority may require evidence of proper installation, procedure, or use. The authority having jurisdiction may also refer to the listings or labeling practices of an organization that is concerned with product evaluations and is thus in a position to determine compliance with appropriate standards for the current production of listed items.
A.3.2.2 Authority Having Jurisdiction (AHJ). The phrase “authority having jurisdiction,” or its acronym AHJ, is used in NFPA documents in a broad manner, since jurisdictions and approval agencies vary, as do their responsibilities. Where public safety is primary, the authority having jurisdiction may be a federal, state, local, or other regional department or individual such as a fire chief; fire marshal; chief of a fire prevention bureau, labor department, or health department; building official; electrical inspector; or others having statutory authority. For insurance purposes, an insurance inspection department, rating bureau, or other insurance company representative may be the authority having jurisdiction. In many circumstances, the property owner or his or her designated agent assumes the role of the authority having jurisdiction; at government installations, the commanding officer or departmental official may be the authority having jurisdiction.

A.3.2.3 Listed. The means for identifying listed equipment may vary for each organization concerned with product evaluation; some organizations do not recognize equipment as listed unless it is also labeled. The authority having jurisdiction should utilize the system employed by the listing organization to identify a listed product.

A.3.3.8 Permit Authorizing Individual (PAI). The PAI is permitted to be, among others, the supervisor, foreperson, property owner or representative, or health and safety administrator. The PAI cannot be the hot work operator, except as permitted in Chapter 6. The PAI is aware of the fire hazards involved and is familiar with the provisions of this standard.

A.3.3.9 Welding and Allied Processes. The “Master Chart of Welding and Allied Processes” in ANSI Z49.1, Safety in Welding, Cutting, and Allied Processes, includes a list of welding and allied processes.

A.4.1 The committee recognizes that management might not always have expertise in hot work and, therefore, would need a knowledgeable designated agent or contractor to act on its behalf. Examples of those who might not have the expertise can include owners of small retail shops, a small apartment complex manager, or a grocery store owner who has no knowledge of hot work safe practices.

Management should ensure that the contractor has evidence of financial responsibility, which can take the form of an insurance certificate or other document attesting to coverage or responsibility.

A.4.2.1 Other special hazards can include, but are not limited to, lead, noise, and radiation. Sometimes these special hazards require disposable outer garments that can catch fire.

A.4.2.3(1) Alternatives to hot work can include the following:

1. Mechanical removal and relocation of frozen piping to a heated area
2. Manual hydraulic shears
3. Mechanical bolting
4. Screwed, flanged, or clamped pipe
5. Reciprocating saw
6. Mechanical pipe cutter
7. Approved self-drilling or compressed air-actuated fasteners

A.4.2.7 The inspection is usually made ½ hour after the completion of hot work to detect and extinguish possible smoldering fires. The inspector should be alert for circumstances that can require an extension of the final inspection interval.

A.4.4.1 The fire watch duties can be assigned to anyone who understands the hazard of the hot work being performed and the limitations placed on that hot work operation by the person issuing the hot work permit (PAI). The fire watch has the responsibility to make certain the hot work area is maintained in a fire-safe condition throughout performance of the hot work and has the authority to stop the hot work if unsafe conditions are observed. The fire watch must understand the basic hazards of any combustible construction involved with the hot work area, the fire exposure hazard that hot work creates to occupancies adjacent to or below the hot work operation, the hazards associated with the occupancy, and the need to maintain proper isolation of all hot work operations from combustible or flammable materials. The fire watch should also be properly trained in the use of manual, portable fire extinguishers and emergency notification procedures within the
facility. The fire watch is not a replacement for proper planning to prevent conditions that allow a fire to develop, regardless of the fire-fighting equipment available and the capabilities of the individuals involved.

A.4.4.4 The fire watch should have experience with test fires.

A.4.4.7 These tasks might include moving partitions relating to the hot work, sweeping in the immediate area, and minimal assistance to the operator.

A.4.5 The trend toward outsourcing facility maintenance and renovations can influence the risks associated with hot work. A contractor might have the technical expertise to perform hot work but is not likely to have a full understanding of fire prevention or of the specific combustible hazards within a client property. Additional safeguards to be considered include, but are not limited to, how the hot work should be isolated to prevent fire hazards; who will be assigned as the fire watch for the hot work operations; the facility emergency notification procedures; available manual fire-fighting tools (like portable fire extinguishers and small hose stations); identification of all areas where hot work is not allowed; connecting hot work equipment to existing utility systems (gas or electricity); and review of any requirements for completion of hot work by a certain time each day.

Hot work loss incidents involving contractors occur with regular frequency. For many of these incidents, facility management has not implemented a process for managing the fire hazards associated with the proposed contract work activity, views the contractor’s personnel as the recognized subject matter experts, and is either ignorant of potential fire hazards with the planned contract activity or presumes the contractor is expert in all associated safety regulations and requirements and will address hazards accordingly.

A.5.1 At a work site, hazards other than hot work, such as radiation, lead, or noise, are often present. Any additional personal protective equipment (PPE) donned for protection against these other hazards should also be appropriate for hot work. Heavier materials, such as woolen clothing or heavy cotton, are preferable to lighter materials because they are more difficult to ignite. Cotton clothing, if used for protection, should be chemically treated to reduce its combustibility. Clothing treated with flame-resistant materials can lose some of its protective characteristics after repeated washing or cleaning. Materials that can melt and cause severe burns should not be used as clothing when the wearer will be welding or cutting.

Sparks can lodge in rolled-up sleeves, pockets of clothing, or cuffs of overalls or trousers. Therefore, it is recommended that sleeves and collars be kept buttoned and pockets be eliminated from the front of clothing. Where pockets are present, they should be emptied of flammable or readily combustible materials. Trousers or overalls should not have cuffs and should not be turned up on the outside. Trousers should overlap shoe tops to prevent spatter from getting inside shoes.

Frayed clothing is particularly susceptible to ignition and burning and should not be worn when welding or cutting.

A.5.3.2.2 An example of a hot work permit is shown in Figure A.5.3.2.2. This permit can be modified to suit local conditions.

A.5.4 For additional information on cutting and welding of containers that have held flammable materials, see NFPA 326 and AWS F4.1, Recommended Safe Practices for the Preparation for Welding and Cutting Containers and Piping.

Additional consideration should be given when hot work is performed in areas near the storage of large quantities of exposed, readily ignitable materials such as bulk sulfur, baled paper, or cotton. For additional information on welding and cutting in storage areas, refer to Chapter 34, General Storage, of NFPA 1 and NFPA 655.

N A.5.4(2) Precautions in addition to those in Section 5.5 for hot work performed during fire protection system impairments can include the following:

1. Charged hose lines
2. Additional fire extinguishers
3. Fire department/brigade presence
4. Discontinuation of hazardous operations
5. Additional fire watch personnel
6. Isolation of combustibles with a 30-minute fire-rated barrier
7. More frequent inspections by the PAI
8. Temporary fire detection
9. Personnel stationed at manual fire protection release stations

N A.5.4(3) Examples of explosive atmospheres include mixtures of flammable gases, vapors, liquids, or combustible dusts with air.

A.5.5 The decision tree in Figure A.5.5 can be used to determine if a hot work permit is necessary.

A.5.5.1.2.1 One such listing includes ANSI/FM 4950, American National Standard for Evaluating Welding Pads, Welding Blankets and Welding Curtains for Hot Work Operations.

A.5.5.1.3 When hot work is performed at an elevated level, it should be noted that sparks or slag can fall at a trajectory and land further than 35 ft (11 m) horizontally from a point directly under the hot work operator.

A.5.5.1.3.1 One such listing includes ANSI/FM 4950, American National Standard for Evaluating Welding Pads, Welding Blankets and Welding Curtains for Hot Work Operations.

A.5.5.1.6 One such listing includes ANSI/FM 4950, American National Standard for Evaluating Welding Pads, Welding Blankets and Welding Curtains for Hot Work Operations.

N A.5.5.1.12 Implementing precautions against accidental activation of automatic fire detection and suppression systems should occur near the hot work operation. For example, a wet rag could be laid over a sprinkler head or a detector could be individually disabled, covered, or removed. Any such precautions taken during hot work operations need to be removed when the hot work operation is complete.

Automatic sprinkler systems should not have the water supply shut off during hot work operation.

A.5.5.1.14 Hot work operations that might fall into the category where the 35 Foot Rule could be enlarged include, but are not limited to, elevated hot work and windy areas.
HOT WORK PERMIT

Seek an alternative/safer method if possible!

Before initiating hot work, ensure precautions are in place as required by NFPA 51B and ANSI Z49.1.

Make sure an appropriate fire extinguisher is readily available.

This Hot Work Permit is required for any operation involving open flame or producing heat and/or sparks. This work includes, but is not limited to, welding, brazing, cutting, grinding, soldering, thawing pipe, torch-applied roofing, or chemical welding.

Date

Location/Building and floor

Work to be done

Time started Time completed

THIS PERMIT IS GOOD FOR ONE DAY ONLY

☒ Available sprinklers, hose streams, and extinguishers are in service and operable.

☒ Hot work equipment is in good working condition in accordance with manufacturer’s specifications.

☒ Special permission obtained to conduct hot work on metal vessels or piping lined with rubber or plastic.

Requirements within 35 ft (11 m) of hot work

☒ Flammable liquid, dust, lint, and oily deposits removed.

☒ Explosive atmosphere in area eliminated.

☒ Floors swept clean and trash removed.

☒ Combustible floors wet down or covered with damp sand or fire-resistive/noncombustible materials or equivalent.

☒ Personnel protected from electrical shock when floors are wet.

☒ Other combustible storage material removed or covered with listed or approved materials (welding pads, blankets, or curtains; fire-resistive tarpaulins), metal shields, or noncombustible materials.

☒ All wall and floor openings covered.

☒ Ducts and conveyors that might carry sparks to distant combustible material covered, protected, or shut down.

Requirements for hot work on walls, ceilings, or roofs

☒ Construction is noncombustible and without combustible coverings or insulation.

☒ Combustible material on other side of walls, ceilings, or roofs is moved away.

Requirements for hot work on enclosed equipment

☒ Enclosed equipment is cleaned of all combustibles.

☒ Containers are purged of flammable liquid/vapor.

☒ Pressurized vessels, piping, and equipment removed from service, isolated, and vented.

Requirements for hot work fire watch and fire monitoring

☒ Fire watch is provided during and for a minimum of 30 min. after hot work, including any break activity.

☒ Fire watch is provided with suitable extinguishers and, where practical, a charged small hose.

☒ Fire watch is trained in use of equipment and in sounding alarm.

☒ Fire watch can be required in adjoining areas, above and below.

☒ Yes ☒ No Per the PAI/fire watch, monitoring of hot work area has been extended beyond the 30 min.

I verify that the above location has been examined, the precautions marked on the checklist below have been taken, and permission is granted for this work.

Name (print) and signature of permit-authorizing individual (PAI)

Name (print) and signature of person doing hot work

© 2018 National Fire Protection Association

FIGURE A.5.3.2.2 Sample of a Hot Work Permit.
A.5.5.1.15 Hot work operations that might fall into the category where the 35 Foot Rule could be reduced include, but are not limited to, torch soldering, gas tungsten arc welding, heat gun operations, and handheld pen-type soldering.

N A.5.5.5 The time period between PAI inspections of the hot work area should not exceed 8 hours.

A.5.6.1 The decision tree in Figure A.5.6.1 can be used to determine if a fire watch is necessary.

A.5.6.1(1) Figure A.5.6.1(1)(a) and Figure A.5.6.1(1)(b) demonstrate the hot work 35 Foot Rule.

A.5.6.2 An additional fire watch(es) might be necessary in certain situations, such as where hot work is performed near open shafts or at elevated heights or where sparks can travel through spaces such as openings.

N A.5.6.3 The provision of additional hot work area monitoring should be determined based on conditions that will support hidden, smoldering fire conditions such as combustible construction, storage of bulk materials such as baled wastepaper or piled trash, or concealed spaces within building construction.

Hot work area monitoring can be provided by any of the following:

1. Personnel working in the area
2. Automatic smoke detection
3. Security or maintenance rounds through the hot work area every 30 minutes
4. Security cameras with smoke or fire detection capability

A.5.7 For hot tapping on a gas pipeline, see ASME B31.8, Gas Transmission and Distribution Piping Systems.

A.6.1 A common example of a situation where this chapter would apply is work performed in a single-dwelling home by a plumber sweating a pipe. Another example is the repair of a wrought iron railing used for steps in a single-dwelling home. A third example is welding performed on construction or agricultural equipment on site. The committee recognizes that it is not always practical to have more than one individual present, and completing a job with one person is a common practice. The committee stresses that it is always better to have more than one individual present to ensure fire safety but realizes that it is not always practical to do so.

A.7.5.2.3 The preferred location for cylinder storage is in an approved storage area outdoors.
FIGURE A.5.6.1 Fire Watch Decision Tree.

1. Did the PAI or AHJ tell you to have a fire watch?
 No

2. Is hot work to be done in a designated area that has been examined and still qualifies as a designated area?
 Yes

3. Is hot work to be done where other than a minor fire might develop?
 No

4. Is hot work to be done where flammables or combustibles are more than 35 ft (11 m) away but are easily ignited by sparks?
 Yes

5. Is hot work to be done where wall or floor openings within 35 ft (11 m) would expose combustibles in adjacent areas?
 No

6. Is hot work to be done where combustibles are adjacent to partitions, ceilings, or roofs being worked on?
 No

7. Is the operator required to don specialty PPE that does not comply with Section 5.1 of NFPA 51B?
 No

8. Are you unsure of any of the “No” answers in questions 1–7?
 Yes

FIGURE A.5.6.1 Fire Watch Decision Tree.
1. Close doors, seal floor openings, post copy of permit, shut down conveyers, and prevent general access.

2. If possible, position operator to redirect spatter during work, or add an additional fire curtain or equivalent.

3. Relocate combustible storage or separate with approved barriers (seal area below dividers) or cover with approved welding pads, blankets, curtains, or fire-resistive tarpaulins.

4. Position fire watch with suitable fire extinguishers to protect potential hazard area and equip fire watch with means for emergency communications.

5. Equipment below might need to be protected.

6. The PAI can extend the 35 Foot Rule as necessary (e.g., because of wind or elevation).

FIGURE A.5.6.1(1)(a) The 35 Foot Rule Illustrated.

FIGURE A.5.6.1(1)(b) Example of Where Multiple Fire Watches Are Needed.
Annex B Significant Hot Work Incidents

This annex is not a part of the requirements of this NFPA document but is included for informational purposes only.

B.1 Hot work processes are a necessary part of our industrial world. Too often, however, the persons (users, supervisors, contractors) involved with these processes do not fully appreciate that their improper use can result in loss of life and property from fire and explosion. In fact, hot work performed improperly is a major cause of fire.

B.2 Annex B is a collection of accounts of fires and explosions caused by improper control of hot work. The sole purpose of this annex is to illustrate how such incidents occur and to emphasize the provisions of this standard.

B.2.1 Kaukauna, WI, Warehouse. While an arc welder was being used on the second floor, sparks dropped through an opening to cardboard boxes below and the boxes ignited. There was no fire watch on the first floor, and when the fire was discovered 15 minutes later, employees could not put it out. They finally called the fire department but were too late to save the two-story building of ordinary construction. The total loss was $1.6 million.

B.2.2 Winnipeg, Manitoba, Food Processing. While an employee was using an oxyacetylene cutting torch to modify a bracket in the boiler room, hot slag ignited canvas and plywood that were being used as a temporary covering over a hole in the wall between the fire-resistive boiler room and the storage room. Fire then spread to waxed cartons and plastic bags in the storage room. Fire fighting was impeded by the windowless walls and thick black smoke. The total loss was $650,000.

B.2.3 Halsey, OR, Rolled Paper Storage. A bracket was being welded onto a column adjacent to an aisle, with rolled paper storage not more than 5 ft (1.5 m) away. A welding permit was reportedly issued for the work, but the standard permit form clearly stated that combustibles within 35 ft (11 m) of the work should be removed or shielded. The permit also required the signature of the supervisor certifying that a check of the area had been made. In this case, there was no protection for the combustibles and no signature.

The fire quickly spread into the interior of the storage pile, but sprinklers operated, roof vents were opened, and hose streams were brought into play as the smoke cleared a little. About 300 rolls were burned beyond salvage, and other rolls were wet. The total loss was $250,000.

B.2.4 Atlanta, GA, Poultry Processing. An employee using an electric arc welder was working in an area above a refrigerated room, which was insulated with polyurethane foam sandwiched between sheets of aluminum. Sparks fell on the exposed ends of the insulation, causing a severe fire. The heat was sufficient to bring about the collapse of exposed metal bar joist roof framing, and the total loss was $250,000.

B.2.5 Ontario, OR, Food Processing. An oxyacetylene cutting torch was being used in a metal-lined freezing tunnel, with some pipes passing through the walls of the tunnel and making a loose fit with these walls. Sparks evidently passed through a crack to ignite polystyrene foam insulation. The ignition occurred during a rest period and was not discovered until the rest period was over. Further time was lost during a fruitless effort to extinguish the fire with extinguishers and a small hose. The fire department, when finally called, was confronted with a tough task due to the heavy smoke and the spread of fire to the concealed and undivided attic space. The total loss was $2.3 million.

B.2.6 San Pedro, CA, Wharf. Workers were using a gasoline-powered chain saw and cutting torch to repair pilings on a 3700 ft (1128 m) long wharf. While some of the workers were refueling the chain saw from a 2 gal (7.6 L) can, another worker was using a cutting torch far too close to the refueling operation. Gasoline vapors ignited and, during efforts to extinguish the fire, the can was kicked into the water. Burning gas in the water ignited the pilings, and flames spread 370 ft (113 m) along the underside of the wharf before fire fighters could control the fire.

B.2.7 Portland, OR, Lumber Mill. Workers had shut down one of several sprinkler systems in the plant to remove branch lines to facilitate removal of a conveyor. While workers were cutting bolts from the conveyor with welding equipment, some of the sparks passed through cracks in the floor and landed in sawdust accumulations below. Smoldering occurred for 3 hours without being noticed by the maintenance employees, who were the only people in the plant. Meanwhile, the area in the region of the cutting operations, but not the floor below, had been washed down and visited regularly at ½-hour intervals.

When the fire was finally noticed, some time was spent in trying to extinguish it before the fire department was called. By the time the fire department arrived, it was too late to save the lumber storage and stacker buildings. Destruction caused a total loss of $1.25 million.

B.2.8 Austin, TX, University Library. Workers were using an acetylene torch to remove old heating ducts in a utility shaft between the 20th and 21st stories of the tower of the 27-story library. Flying sparks fell through a vent and ignited papers stacked against the vent in a storage room on the 20th floor. Apparently the fire burned for 20 to 30 minutes before discovery.

There was no fire protection in the upper stories, except for portable fire extinguishers, and fire fighters had to connect to the standpipes in the 3rd and 4th stories and pull hose lines up the enclosed stairways to the 20th and 21st stories. They finally controlled the fire in 2½ hours, but damage extended to 4 stories when fire spread by way of non-firestopped utility shafts and elevator shafts.

The work was being done by two air-conditioning installation workers, on contract. They had not investigated the possibility of combustible material being in contact with the old heating duct on which they were working.

B.2.9 Atlanta, GA, Wire and Nail Mill. A small fire started on the mill’s built-up wood roof while repairs were made using an acetylene torch for welding. The workers making the repairs believed that they had extinguished the fire, but 3½ hours later the fire broke out again and spread on an accumulation of metal dust on overhead beams throughout the unsprinklered, undivided single-story structure. The total loss was $2.3 million.

B.2.10 Provo, UT, Hardware Warehouse. An employee was welding a broken metal roof beam in the attic of a one-story brick, wood-joisted wholesale hardware building. A spark fell through a crack in the attic floor and ignited cardboard boxes in the shelving below. No precautions had been taken to guard against fire, and the welder did not realize that there was a fire
until he felt the heat of it coming up from below. The total loss was $131,000.

B.2.11 **Thomson, NY, Paper Mill.** Production lines were shut down in a tissue paper mill so that maintenance workers could use a cutting torch to remove a drive roll for repairs. The area where the cutting was to be done was cleaned up and wet down as a precaution against flying sparks. Also, an employee with a portable extinguisher acted as fire watch during the cutting operation.

A stray spark ignited paper dust on the floor at the adjacent machine. When the fire watch attempted to extinguish the small blaze, he found that his portable extinguisher was empty. The blaze spread to paper dust and lint on top of an unused overhead heating duct, which was 2 ft to 5 ft (0.6 m to 1.5 m) in diameter. It took fire fighters about 3 hours to extinguish the blaze in the unsprinklered duct. The damage to tissue paper by fire-fighting operations amounted to $25,000.

B.2.12 **Jacksonville, IL, Pavement Manufacturing.** After partially unloading a tanker of MC 800 road oil at a temperature of about 290°F (143°C), two employees went to the top of the asphalt tank to straighten a pipe through which they measured the oil level. They were using an acetylene torch for this repair work. The torch so heated the top of the tank that flammable vapors within the tank exploded and tore up a large part of the top. Both men were thrown long distances and killed.

B.2.13 **Toledo, OH, Tar Manufacturing.** Welders were repairing a leak in an odor-scrubbing system when an explosion occurred in a tank connected with the system and containing naphthalene vapors above the hot tar level. It is believed that heat from the torch ignited flammable vapors within the pipe and that the flame was propagated to the tank. The spread of hot tar when the tank ruptured handicapped fire fighters in gaining quick access to the area. Three workers were killed, and property damage was $110,000.

B.2.14 **New Orleans, LA, Office Building.** An outside contractor installing new elevator equipment in a seven-story office building with plank floors set a number of fires as a result of cutting and welding operations, but the contractor’s employees extinguished all but one. That fire occurred toward the end of the day’s work, and the four employees, without discovering the fire, went home. Later in the evening, the night porter noticed the old elevator penthouse, which was partly of wooden construction, ablaze as he was summoning the elevator to perform his normal duties. Two hours later, the fire department, using many large hose lines, brought the fire under control. The loss, mainly to the top story from fire and to lower stories from water, was $390,000.

There was no formal fire watch nor, following the last use of the welder, was there any inspection of the area during a set period after the welding.

B.2.15 **Hatboro, PA, Chemical Plant.** Workers were welding some additional fill-line supports on a 6000 gal (22,713 L) vertical tank containing 3000 gal (11,356 L) of alcohol. Heat transmitted through the metal of the tank ignited alcohol vapors inside, and the tank was blown into the air. Alcohol was dumped into two diked areas containing eight tanks of high-flashpoint liquid, but heavy use of hose streams kept other tanks from rupturing. The total loss was $100,000.

B.2.16 **New Orleans, LA, Candy Storage.** The outside of the walls of this sprinklered metal-frame warehouse were lined with a combustible, laminated paper-asphalt vapor barrier and a ½ in. (1.27 cm) layer of foamed polystyrene insulation. A worker was welding metal plates to the base of the structural member when the combustible vapor barrier ignited. While the welder ran to turn in an alarm and to get a portable extinguisher, seven sprinklers operated to control the fire.

B.2.17 **Billings, MT, Auditorium.** While remodeling the auditorium at a fairground, workers were welding straps on channel iron, which had been placed on each side of 12 in. x 12 in. (30.5 cm x 30.5 cm) wooden uprights to provide more strength to the columns. Heat from the torch apparently caused some smoldering in the columns. Approximately 5 hours later, the caretaker noticed that the building was on fire. It was too late to save the building, which was of ordinary construction and nonsprinklered. The total loss was $266,000.

B.2.18 **Sorel, PQ, Passenger Ship Under Construction.** A shipyard worker was welding a steel bracket beneath the steel deck of a stateroom when the hot deck plate ignited paper on the floor of the stateroom. Flames then spread to wooden paneling and other combustibles and soon reached synthetic rubber insulation on electrical cables and also resin-impregnated glass fiber ducts carrying 9000 ft³/min (85 m³/min) of warm air. Although a worker discovered the fire within a few minutes and the fans for the air ducts were quickly shut off, the heat and dense smoke from the burning resin and synthetic rubber prevented control. The fire spread from the promenade deck to three other decks. Damage to the vessel was $4 million.

B.2.19 **San Francisco, CA, Marine Terminal.** The reinforced concrete dock had a tar paper vapor barrier beneath the concrete and a wooden fenderline around the outside of the apron. Workers had a 30-day blanket welding and cutting permit but had not notified the port authority fire marshal that they planned to do cutting in the known dangerous area. They had also failed to take a portable extinguisher to the job with them. The two workers, while in a boat, were cutting a reinforcing rod beneath the apron when flame or sparks from the torch ignited the tar paper. The fire spread overhead so fast that the two men had to jump into the water to save themselves. The loss was estimated at $200,000.

B.2.20 **Searcy, AR, Missile Silo.** A welder in a missile silo under repair inadvertently allowed a temporarily installed steel-braided hose containing hydraulic oil under 500 psi (3447.5 kPa) of pressure in the range of the electric arc, which caused rupture of the steel braid and of the Teflon® inner tube. The escaping oil ignited at the arc, and a severe fire resulted in the confined underground space, fatally trapping 53 workers. The hose was only 14 in. (36 cm) away from the work being done, and working conditions were crowded and cramped.

After the accident, conditions were duplicated as nearly as possible at another site with proper protection of personnel. The time from the start of the arc at the hose to rupture was 0.69 second, and the time from rupture to ignition was 0.02 second.

B.2.21 **River Rouge, MI, Metalworking.** A worker was cutting an object with a torch, using the top of a drum containing kerosene as a workbench, when the torch cut into the drum and caused an explosion in the partially full interior. The worker was fatally burned.
B.2.22 Port Maitland, Ontario, Fertilizer Manufacturing. Workers had been welding on a rubber-lined steel separator vessel. Reportedly, the rubber lining inside the vessel had been stripped from the metal tank wall where welding was to be done. A short time later, however, workers noticed smoke and discovered that the lining was burning. The fire spread from the vessel through several feet of rubber-lined duct connected to the vessel, and employees were unable to extinguish the fire on the vessel for approximately 45 minutes. The process equipment that was affected remained out of service for 2 weeks.

B.2.23 El Centro, CA, Hospital. During construction of a new hospital wing, sparks from a cutting torch being used to cut a steel beam in an existing wall ignited cellulose insulation in the attic of the existing single-story building. Although workers extinguished the fire before the fire department arrived [limiting firespread to a 20 ft × 4 ft (6.1 m × 1.2 m) area of insulation], it took 2 hours to remove smoke from the maternity ward.

The cellulose insulation had been treated with a fire retardant when installed 7 years prior to the fire. However, tests showed that much of its fire-retardant property had been lost.

B.2.24 Texas, Building Under Construction. During a late stage of construction of an apartment complex consisting of 23 two-story wooden buildings, heat from a plumber’s torch ignited exterior low-density fiberboard sheathing on one of the buildings. The plumber had left the site approximately 1 hour prior to the discovery of the fire. The local fire department was notified at 6:15 a.m. and sent a crew of two fire fighters, but winds gusting up to 40 mph made it difficult to control the fire. The fire spread from a welding torch ignited a smoldering sawdust pile at 6:10 a.m. attempted to extinguish it using one hose had been maintained, the loss, which was estimated to be a total loss, at a value of $525,000, and never opened for business.

No one was injured, and only the building’s contents were damaged. The loss was estimated at $10,000.

B.2.25 Montana, Lumber Mill. A fire started when sparks from a welding torch ignited a smoldering fire in a pile of sawdust. The night watchman who discovered the fire in the sawdust pile at 6:10 a.m. attempted to extinguish it using one of the hose lines, but, due to lack of maintenance, the hose burst. The watchman ran to another section of the building to get another hose. When he returned, the fire had spread and was out of control. He telephoned the fire department at 6:15 a.m. Officials stated that repair work, using a welding torch, was being done in the area of fire origin and had been completed approximately 1 hour prior to the discovery of the fire.

Contributing to the mill’s destruction was the high concentration of unfinished lumber and sawdust, which helped increase the fire’s spread. Fire officials stated that if the occupant fire hose had been maintained, the loss, which was estimated at $500,000, might have been minimized.

B.2.26 Tennessee, Building Under Construction. A welder on the third floor of this construction project unknowingly started a fire on the floor below, which threatened the entire complex as well as other workers. The welder did not realize how far the globules of molten metal from his operation were traveling until another construction worker spotted a fire in some combustible material on the second floor at 1:44 p.m. The wind had carried the molten metal to the lower east wing and ignited one of four cardboard and wood crates, each of which contained a 100 gal (379 L) water heater. The workers tried to control the fire with portable extinguishers, but winds gusting up to 40 mph ended that effort quickly. Someone on the site telephoned the fire department, and fire fighters had the situation stabilized soon after they arrived.

B.2.27 Michigan, Restaurant. A plumber attempting to thaw some frozen water pipes in a newly constructed restaurant inadvertently started a fire with an open-flame torch. The restaurant was a one-story, 7200 ft² (669 m²) wood building. The torch ignited insulation material around the pipes, which were located above the kitchen ceiling. The plumber and several restaurant workers attempted to extinguish the fire with two 10 lb (4.5 kg) dry chemical fire extinguishers. When this attempt did not work, the local fire department was contacted as the fire moved quickly to the attic. The restaurant was determined to be a total loss, at a value of $525,000, and never opened for business.

B.2.28 Oak Ridge, TN, Demolition/Maintenance Worker. A welder was fatally burned while using a cutting torch to cut process piping to remove a converter from a building. Multi-layer anticontamination clothing, cotton coveralls, and a full-face respirator prevented the welder from recognizing he was on fire. Lack of flame-retardant clothing, absence of a fire watch, and inadequate hot work procedures were identified as contributing to the incident. An investigation board concluded that had the welder’s clothing been treated with flame-retardant chemicals, the fatality would not have occurred.

Annex C Informational References

C.1.1 NFPA Publications. National Fire Protection Association, 1 Batterymarch Park, Quincy, MA 02169-7471.

C.1.2 Other Publications.

C.1.2.2 ASME Publications. American Society of Mechanical Engineers, Two Park Avenue, New York, NY 10016-5990.

C.1.2.3 AWS Publications. American Welding Society, 8669 NW 36 Street, #130, Miami, FL 33166-6672.

C.2 Informational References. The following documents or portions thereof are listed here as informational resources only. They are not a part of the requirements of this document.

C.3 References for Extracts in Informational Sections. (Reserved)
Index

Copyright © 2018 National Fire Protection Association. All Rights Reserved.

The copyright in this index is separate and distinct from the copyright in the document that it indexes. The licensing provisions set forth for the document are not applicable to this index. This index may not be reproduced in whole or in part by any means without the express written permission of NFPA.

<table>
<thead>
<tr>
<th>Administration, Chap. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application, 1.3</td>
</tr>
<tr>
<td>Equivalency, 1.5</td>
</tr>
<tr>
<td>Purpose, 1.2, A.1.2</td>
</tr>
<tr>
<td>Retroactivity, 1.4</td>
</tr>
<tr>
<td>Scope, 1.1</td>
</tr>
<tr>
<td>Units and Formulas, 1.6</td>
</tr>
</tbody>
</table>

Approved

- Definition, 3.2.1, A.3.2.1
- Authority Having Jurisdiction (AHJ)
 - Definition, 3.2.2, A.3.2.2

Definitions, Chap. 3

Explanatory Material, Annex A

Fire Monitoring

- Definition, 3.3.1

Fire Prevention Precautions, Chap. 5

- Cylinders, 5.8
- Fire Extinguishers, 5.2
- Fire Watch and Fire Monitoring, 5.6
- Hot Tapping, 5.7, A.5.7
- Hot Work Permit, 5.5, A.5.5
- Nonpermissible Areas, 5.4, A.5.4
- Permissible Areas, 5.3
 - Designated or Permit-Required Areas, 5.3.2
 - Designated Areas, 5.3.2.1
 - Permit-Required Areas, 5.3.2.2, A.5.3.2.2
- General, 5.3.1
- Personal Protective Clothing, 5.1, A.5.1

Fire Protection System

- Definition, 3.3.2

Fire Watch

- Definition, 3.3.3

Hot Work

- Definition, 3.3.4

Informational References, Annex C

Listed

- Definition, 3.2.3, A.3.2.3

Management

- Definition, 3.3.5

Permissible Areas

- Definition, 3.3.6
- Designated Area
- Definition, 3.3.6.1
- Permit-Required Area
- Definition, 3.3.6.2

Permit

- Definition, 3.3.7

Permit Authorizing Individual (PAI)

- Definition, 3.3.8, A.3.3.8

Public Exhibitions and Demonstrations, Chap. 7

- Cylinders, 7.5
 - Cylinder Protection, 7.5.7
 - Cylinder Valves, 7.5.5
 - Gas Capacity Limitation, 7.5.1
 - Process Hose, 7.5.4
 - Storage, 7.5.2
 - Transporting Cylinders, 7.5.3
 - Valve Caps, 7.5.6
- Fire Protection, 7.4
 - Fire Department Notification, 7.4.3
 - Fire Extinguishers, 7.4.1
 - Shielding, 7.4.2
- Site, 7.3
 - Design, 7.3.2
 - Location, 7.3.1
 - Supervision, 7.2

Referenced Publications, Chap. 2

Responsibility for Hot Work, Chap. 4

- Contractors, 4.5, A.4.5
- Fire Watch, 4.4
- Hot Work Operator, 4.3
- Management, 4.1, A.4.1
- Mutual Responsibility, 4.6
- Permit Authorizing Individual (PAI), 4.2

Shall

- Definition, 3.2.4

Should

- Definition, 3.2.5

Significant Hot Work Incidents, Annex B
Sole Proprietors and Individual Operators, Chap. 6
 Assignment of PAI and Fire Watch, 6.1, A.6.1
 Written Hot Work Permit, 6.2

Standard
 Definition, 3.2.6

-W-

Welding and Allied Processes
 Definition, 3.3.9, A.3.3.9

Welding Blanket
 Definition, 3.3.10, A.3.3.10

Welding Curtain
 Definition, 3.3.11, A.3.3.11

Welding Pads
 Definition, 3.3.12, A.3.3.12
Sequence of Events for the Standards Development Process

Once the current edition is published, a Standard is opened for Public Input.

Step 1 – Input Stage
- Input accepted from the public or other committees for consideration to develop the First Draft
- Technical Committee holds First Draft Meeting to revise Standard (23 weeks); Technical Committee(s) with Correlating Committee (10 weeks)
- Technical Committee ballots on First Draft (12 weeks); Technical Committee(s) with Correlating Committee (11 weeks)
- Correlating Committee First Draft Meeting (9 weeks)
- Correlating Committee ballots on First Draft (5 weeks)
- First Draft Report posted on the document information page

Step 2 – Comment Stage
- Public Comments accepted on First Draft (10 weeks) following posting of First Draft Report
- If Standard does not receive Public Comments and the Technical Committee chooses not to hold a Second Draft meeting, the Standard becomes a Consent Standard and is sent directly to the Standards Council for issuance (see Step 4) or
- Technical Committee holds Second Draft Meeting (21 weeks); Technical Committee(s) with Correlating Committee (7 weeks)
- Technical Committee ballots on Second Draft (11 weeks); Technical Committee(s) with Correlating Committee (10 weeks)
- Correlating Committee Second Draft Meeting (9 weeks)
- Correlating Committee ballots on Second Draft (8 weeks)
- Second Draft Report posted on the document information page

Step 3 – NFPA Technical Meeting
- Notice of Intent to Make a Motion (NITMAM) accepted (5 weeks) following the posting of Second Draft Report
- NITMAMs are reviewed and valid motions are certified by the Motions Committee for presentation at the NFPA Technical Meeting
- NFPA membership meets each June at the NFPA Technical Meeting to act on Standards with “Certified Amending Motions” (certified NITMAMs)
- Committee(s) vote on any successful amendments to the Technical Committee Reports made by the NFPA membership at the NFPA Technical Meeting

Step 4 – Council Appeals and Issuance of Standard
- Notification of intent to file an appeal to the Standards Council on Technical Meeting action must be filed within 20 days of the NFPA Technical Meeting
- Standards Council decides, based on all evidence, whether to issue the standard or to take other action

Notes:
1. Time periods are approximate; refer to published schedules for actual dates.
2. Annual revision cycle documents with certified amending motions take approximately 101 weeks to complete.
3. Fall revision cycle documents receiving certified amending motions take approximately 141 weeks to complete.

Committee Membership Classifications

The following classifications apply to Committee members and represent their principal interest in the activity of the Committee.

1. M Manufacturer: A representative of a maker or marketer of a product, assembly, or system, or portion thereof, that is affected by the standard.
2. U User: A representative of an entity that is subject to the provisions of the standard or that voluntarily uses the standard.
3. IM Installer/Maintainer: A representative of an entity that is in the business of installing or maintaining a product, assembly, or system affected by the standard.
4. L Labor: A labor representative or employee concerned with safety in the workplace.
5. RT Applied Research/Testing Laboratory: A representative of an independent testing laboratory or independent applied research organization that promulgates and/or enforces standards.
6. E Enforcing Authority: A representative of an agency or an organization that promulgates and/or enforces standards.
7. I Insurance: A representative of an insurance company, broker, agent, bureau, or inspection agency.
8. C Consumer: A person who is or represents the ultimate purchaser of a product, system, or service affected by the standard, but who is not included in (2).
9. SE Special Expert: A person not representing (1) through (8) and who has special expertise in the scope of the standard or portion thereof.

NOTE 1: “Standard” connotes code, standard, recommended practice, or guide.
NOTE 2: A representative includes an employee.
NOTE 3: While these classifications will be used by the Standards Council to achieve a balance for Technical Committees, the Standards Council may determine that new classifications of member or unique interests need representation in order to foster the best possible Committee deliberations on any project. In this connection, the Standards Council may make such appointments as it deems appropriate in the public interest, such as the classification of “Utilities” in the National Electrical Code Committee.
NOTE 4: Representatives of subsidiaries of any group are generally considered to have the same classification as the parent organization.
Submitting Public Input / Public Comment Through the Online Submission System

Soon after the current edition is published, a Standard is open for Public Input.

Before accessing the Online Submission System, you must first sign in at www.nfpa.org. Note: You will be asked to sign-in or create a free online account with NFPA before using this system:

a. Click on Sign In at the upper right side of the page.

b. Under the Codes and Standards heading, click on the “List of NFPA Codes & Standards,” and then select your document from the list or use one of the search features.

OR

a. Go directly to your specific document information page by typing the convenient shortcut link of www.nfpa.org/document# (Example: NFPA 921 would be www.nfpa.org/921). Sign in at the upper right side of the page.

To begin your Public Input, select the link “The next edition of this standard is now open for Public Input” located on the About tab, Current & Prior Editions tab, and the Next Edition tab. Alternatively, the Next Edition tab includes a link to Submit Public Input online.

At this point, the NFPA Standards Development Site will open showing details for the document you have selected. This “Document Home” page site includes an explanatory introduction, information on the current document phase and closing date, a left-hand navigation panel that includes useful links, a document Table of Contents, and icons at the top you can click for Help when using the site. The Help icons and navigation panel will be visible except when you are actually in the process of creating a Public Input.

Once the First Draft Report becomes available there is a Public Comment period during which anyone may submit a Public Comment on the First Draft. Any objections or further related changes to the content of the First Draft must be submitted at the Comment stage.

To submit a Public Comment you may access the online submission system utilizing the same steps as previously explained for the submission of Public Input.

For further information on submitting public input and public comments, go to: http://www.nfpa.org/publicinput.

Other Resources Available on the Document Information Pages

About tab: View general document and subject-related information.

Next Edition tab: Follow the committee’s progress in the processing of a Standard in its next revision cycle.

Technical Committee tab: View current committee member rosters or apply to a committee.

Technical Questions tab: For members and Public Sector Officials/AHJs to submit questions about codes and standards to NFPA staff. Our Technical Questions Service provides a convenient way to receive timely and consistent technical assistance when you need to know more about NFPA codes and standards relevant to your work. Responses are provided by NFPA staff on an informal basis.

Products & Training tab: List of NFPA’s publications and training available for purchase.
I. Applicable Regulations. The primary rules governing the processing of NFPA standards (codes, standards, recommended practices, and guides) are the NFPA Regulations Governing the Development of NFPA Standards (Regs). Other applicable rules include NFPA Bylaws, NFPA Technical Meeting Convention Rules, NFPA Guide for the Conduct of Participants in the NFPA Standards Development Process, and the NFPA Regulations Governing Petitions to the Board of Directors from Decisions of the Standards Council. Most of these rules and regulations are contained in the NFPA Standards Directory. For copies of the Directory, contact Codes and Standards Administration at NFPA Headquarters; all these documents are also available on the NFPA website at “www.nfpa.org.”

The following is general information on the NFPA process. All participants, however, should refer to the actual rules and regulations for a full understanding of this process and for the criteria that govern participation.

II. Technical Committee Report. The Technical Committee Report is defined as “the Report of the responsible Committee(s), in accordance with the Regulations, in preparation of a new or revised NFPA Standard.” The Technical Committee Report is in two parts and consists of the First Draft Report and the Second Draft Report. (See Regs at Section 1.4.)

III. Step 1: First Draft Report. The First Draft Report is defined as “Part one of the Technical Committee Report, which documents the Input Stage.” The First Draft Report consists of the First Draft, Public Input, Committee Input, Committee and Correlating Committee Statements, Correlating Notes, and Ballot Statements. (See Regs at 4.2.5.2 and Section 4.3.) Any objection to an action in the First Draft Report must be raised through the filing of an appropriate Comment for consideration in the Second Draft Report or the objection will be considered resolved. [See Regs at 4.3.1(b).]

IV. Step 2: Second Draft Report. The Second Draft Report is defined as “Part two of the Technical Committee Report, which documents the Comment Stage.” The Second Draft Report consists of the Second Draft, Public Comments with corresponding Committee Actions, Committee and Correlating Committee Comments, Correlating Notes and their respective Committee Statements, Committee Comments, Correlating Notes and Ballot Statements. (See Regs at 4.2.5.2 and Section 4.4.) The First Draft Report and the Second Draft Report together constitute the Technical Committee Report. Any outstanding objection following the Second Draft Report must be raised through an appropriate Amending Motion at the NFPA Technical Meeting or the objection will be considered resolved. [See Regs at 4.4.1(b).]

V. Step 3a: Action at NFPA Technical Meeting. Following the publication of the Second Draft Report, there is a period during which those wishing to make proper Amending Motions on the Technical Committee Reports must signal their intention by submitting a Notice of Intent to Make a Motion (NITMAM). (See Regs at 4.5.2.) Standards that receive notice of proper Amending Motions (Certified Amending Motions) will be presented for action at the annual June NFPA Technical Meeting. At the meeting, the NFPA membership can consider and act on these Certified Amending Motions as well as Follow-up Amending Motions, that is, motions that become necessary as a result of a previous successful Amending Motion. (See 4.5.3.2 through 4.5.3.6 and Table 1, Columns 1-3 of Regs for a summary of the available Amending Motions and who may make them.) Any outstanding objection following action at an NFPA Technical Meeting (and any further Technical Committee consideration following successful Amending Motions, see Regs at 4.5.3.7 through 4.6.5.3) must be raised through an appeal to the Standards Council or it will be considered to be resolved.

VI. Step 3b: Documents Forwarded Directly to the Council. Where no NITMAM is received and certified in accordance with the Technical Meeting Convention Rules, the standard is forwarded directly to the Standards Council for action on issuance. Objections are deemed to be resolved for these documents. (See Regs at 4.5.2.5.)

VII. Step 4a: Council Appeals. Anyone can appeal to the Standards Council concerning procedural or substantive matters related to the development, content, or issuance of any document of the NFPA or on matters within the purview of the authority of the Council, as established by the Bylaws and as determined by the Board of Directors. Such appeals must be in written form and filed with the Secretary of the Standards Council (see Regs at Section 1.6). Time constraints for filing an appeal must be in accordance with 1.6.2 of the Regs. Objections are deemed to be resolved if not pursued at this level.

VIII. Step 4b: Document Issuance. The Standards Council is the issuer of all documents (see Article 8 of Bylaws). The Council acts on the issuance of a document presented for action at an NFPA Technical Meeting within 75 days from the date of the recommendation from the NFPA Technical Meeting, unless this period is extended by the Council (see Regs at 4.7.2). For documents forwarded directly to the Standards Council, the Council acts on the issuance of the document at its next scheduled meeting, or at such other meeting as the Council may determine (see Regs at 4.5.2.5 and 4.7.4).

IX. Petitions to the Board of Directors. The Standards Council has been delegated the responsibility for the administration of the codes and standards development process and the issuance of documents. However, where extraordinary circumstances requiring the intervention of the Board of Directors exist, the Board of Directors may take any action necessary to fulfill its obligations to preserve the integrity of the codes and standards development process and to protect the interests of the NFPA. The rules for petitioning the Board of Directors can be found in the Regulations Governing Petitions to the Board of Directors from Decisions of the Standards Council and in Section 1.7 of the Regs.

X. For More Information. The program for the NFPA Technical Meeting (as well as the NFPA website as information becomes available) should be consulted for the date on which each report scheduled for consideration at the meeting will be presented. To view the First Draft Report and Second Draft Report as well as information on NFPA rules and for up-to-date information on schedules and deadlines for processing NFPA documents, check the NFPA website (www.nfpa.org/docinfo) or contact NFPA Codes & Standards Administration at (617) 984-7246.
Have a question about the code or standard you’re reading now?

NFPA Xchange™ can help!

NFPA Xchange™ brings together over 30,000 professionals worldwide, asking and answering each other’s questions, sharing ideas, and discussing the issues impacting your industry today.

NFPA Xchange™ is free to join and offers:

- A robust collection of previously asked and answered questions to search
- Access to thousands of peers for problem-solving and on-the-job advice
- NFPA blogs, white papers, and webinars in one convenient place

NFPA members also enjoy **Xchange™ Members Only**, the online space for technical questions* answered by NFPA staff, exclusive NFPA live events, and premier access to curated content.

Join NFPA Xchange™ TODAY!

www.nfpa.org/xchange

Xchange Today. Safer Tomorrow.

For the full terms of use, please visit nfpa.org/standard_items/terms-of-use#xchange. NFPA® is a registered trademark of the National Fire Protection Association, Quincy, MA 02169.