
This standard is issued under the fixed designation C1437; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reaffirmation. A superscript epsilon (ε) indicates an editorial change since the last revision or reaffirmation.

1. Scope*

1.1 This test method covers the determination of flow of hydraulic cement mortars.

1.2 The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard. When combined standards are cited, the selection of the measurement systems is at the user’s discretion subject to the requirements of the referenced standard.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:
C185 Test Method for Air Content of Hydraulic Cement Mortar
C511 Specification for Mixing Rooms, Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the Testing of Hydraulic Cements and Concretes

3. Significance and Use

3.1 This test method is intended to be used to determine the flow of hydraulic cement mortars, and of mortars containing cementitious materials other than hydraulic cements.

3.2 While flow is not usually included in hydraulic cement specifications, it is commonly used in standard tests that require the mortar to have a water content that provides a specified flow level.

4. Apparatus

4.1 Flow Table, Flow Mold, Conforming to the requirements of Specification C230/C230M.

4.2 Caliper, Conforming to the requirements of Specification C230/C230M. Alternatively, any outside-measuring caliper constructed of corrosion-resistant material may be used, provided that it is incremented in millimetres and its maximum extent of measuring is at least 260 mm.

4.3 Tamper, conforming to the requirements of Test Method C109/C109M.

4.4 Trowel, having a steel blade 100 to 150 mm in length, with straight edges. The edges when placed on a plane surface shall not depart from straightness by more than 1 mm.

4.5 Straightedge, made of steel, shall be at least 200 mm long and not less than 1.5 mm nor more than 3.5 mm in thickness. Its edge shall not depart from a plane surface by more than 1 mm.

5. Temperature and Humidity

5.1 The temperature and relative humidity of the air in the mixing room shall be as prescribed in Specification C511.

6. Materials

6.1 Hydraulic Cement Mortar—A mortar for which the determination of flow is specified or desired.

7. Procedure

7.1 Determination of Flow:

7.1.1 Carefully wipe the flow table clean and dry, and place the flow mold at the center. Place a layer of mortar about 25 mm in thickness in the mold and tamp 20 times with the tamper. The tamping pressure shall be just sufficient to ensure uniform filling of the mold. Then fill the mold with mortar and tamp as specified for the first layer. Cut off the mortar to a plane surface flush with the top of the mold by drawing the straightedge or the edge of the trowel with a sawing motion across the top of the mold. Wipe the table top clean and dry, being especially careful to remove any water from around the edge of the flow mold. Lift the mold away from the mortar.
1 min after completing the mixing operation. Immediately drop the table 25 times in 15 s, unless otherwise specified.

7.1.2 If using the caliper specified in Specification C230/C230M, measure the diameter of the mortar along the four lines scribed in the table top, recording each diameter as the number of caliper divisions, estimated to one tenth of a division. If some other caliper is being used, measure the diameter of the mortar along the four lines scribed in the table top, recording each diameter to the nearest millimetre.

8. Calculation

8.1 The flow is the resulting increase in average base diameter of the mortar mass, expressed as a percentage of the original base diameter.

8.2 If using the caliper specified in Specification C230/C230M, add the four readings, and record the total. This gives the flow in percent.

8.2.1 If using some other caliper, compute the flow in percent by dividing “A” by the original inside base diameter in millimetres and multiplying by 100.

where:
A = average of four readings in millimetres, minus the original inside base diameter in millimetres.

9. Report

9.1 Report the flow to the nearest 1 %.

10. Precision and Bias

10.1 Precision—The single-operator, within-laboratory standard deviation has been found to be 4 % flow. Therefore, results of two properly conducted tests by the same operator on similar batches should not differ by more than 11 % (Note 1).

10.1.1 The multilaboratory standard deviation has been found to be 11 %. Therefore, results of two different laboratories on similar batches should not differ by more than 31 % flow (Note 1).

9. Report

9.1 Report the flow to the nearest 1 %.

10. Precision and Bias

10.1 Precision—The single-operator, within-laboratory standard deviation has been found to be 4 % flow. Therefore, results of two properly conducted tests by the same operator on similar batches should not differ by more than 11 % (Note 1).

10.1.1 The multilaboratory standard deviation has been found to be 11 %. Therefore, results of two different laboratories on similar batches should not differ by more than 31 % flow (Note 1).

NOTE 1—Data produced when water content is being varied to obtain a given flow is not applicable for this purpose. Only data where flow has been determined using a given cement and fixed water content is applicable. Consequently, the only data currently available is that extracted from the CCRL Proficiency Sample Program for CS Flow on C109/C109M mortars (dropping the flow table 25 times in 15 s). The data for Sample Nos. 109, 110, 111, and 112 have been used to develop the precision statements given.

10.2 Bias—Since there is no accepted reference material suitable for determining flow available, no statement on bias is made.

11. Keywords

11.1 flow; hydraulic cement; mortar

SUMMARY OF CHANGES

Committee C01 has identified the location of selected changes to this test method since the last issue, C1437 – 13, that may impact the use of this test method. (Approved Dec. 1, 2015)

(1) Previous Note 1 was removed.

(2) 1.2 was revised.